Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 186(2): 1167-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24114278

RESUMO

In an ongoing effort to propose biologically protective nutrient criteria, we examined how total nitrogen (TN) and its forms were associated with macroinvertebrate communities in wadeable streams of Maryland. Taxonomic and functional metrics of an index of biological integrity (IBI) were significantly associated with multiple nutrient measures; however, the highest correlations with nutrients were for ammonia-N and nitrite-N and among macroinvertebrate measures were for Beck's Biotic Index and its metrics. Since IBI metrics showed comparatively less association, we evaluated how macroinvertebrate taxa related to proposed nutrient criteria previously derived for those same streams instead of developing nutrient-biology thresholds. We identified one tolerant and three intolerant taxa whose occurrence appeared related to a TN benchmark. Individually, these taxa poorly indicated whether streams exceeded the benchmark, but combining taxa notably improved classification rates. We then extracted major physiochemical gradients using principal components analysis to develop models that assessed their influence on nutrient indicator taxa. The response of intolerant taxa was predominantly influenced by a nutrient-forest cover gradient. In contrast, habitat quality had a greater effect on tolerant taxa. When taxa were aggregated into a nutrient sensitive index, the response was primarily influenced by the nutrient-forest gradient. Multiple lines of evidence highlight the effects of excessive nutrients in streams on macroinvertebrate communities and taxa in Maryland, whose loss may not be reflected in metrics that form the basis of biological criteria. Refinement of indicator taxa and a nutrient-sensitive index is warranted before thresholds in aquatic life to water quality are quantified.


Assuntos
Ecossistema , Monitoramento Ambiental , Invertebrados/classificação , Nitrogênio/análise , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , Animais , Biodiversidade , Maryland
2.
Environ Monit Assess ; 185(3): 2123-37, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22644126

RESUMO

Management of stream nutrients is becoming increasingly important in order to protect both water quality and aquatic resources throughout the USA. Using an extensive water quality database from the long-term Maryland Biological Stream Survey (MBSS), we describe nutrient relationships to landscape characteristics as total nitrogen (TN) and total phosphorus (TP) of small-order, non-tidal streams in USEPA L2 and L3 ecoregions in Maryland and by MBSS stream order at the L2 and L3 ecoregion levels. To protect stream ecosystem integrity, preliminary reference nutrient estimates (TN and TP) as percentiles (25th of all stream reaches and 75th of stream reference reaches) for the six Maryland L3 ecoregions are: Blue Ridge TN 0.29 and 0.64 mg/L, TP 0.0065 and 0.0090 mg/L; Central Appalachians TN 0.40 and 1.0 mg/L, TP 0.0060 and 0.015 mg/L; Middle Atlantic Coastal Plains TN 0.93 and 2.5 mg/L, TP 0.094 and 0.065 mg/L; Northern Piedmont TN 1.6 and 1.8 mg/L, TP 0.010 and 0.015 mg/L; Ridge and Valley TN 0.40 and 0.98 mg/L, TP 0.0063 and 0.012 mg/L; and Southeastern Plains TN 0.33 and 0.82 mg/L, TP 0.016 and 0.042 mg/L. High levels of both TN and TP are present in many streams found in non-tidal watersheds associated with all Maryland ecoregions, but are especially elevated in the Northern Piedmont and Middle Atlantic Coastal Plain ecoregions, with the latter second-order streams (average TN > 2.9 mg/L) significantly higher than all other ecoregion-order combinations. Across all six ecoregions, mean nutrient loading for both TN and TP was generally equivalent in first-order streams to nutrient concentrations seen in both second- and third-order streams, indicating a definite need to increase efforts in preventing nutrients from entering first-order streams. Small-order stream nutrient levels are the drivers for subsequent TN and TP inputs into the upper freshwater tidal reaches of the Chesapeake Bay, resulting in a potential risk for altered estuarine ecosystems.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Ecossistema , Maryland , Nitrogênio/normas , Fósforo/normas , Poluentes Químicos da Água/normas , Poluição Química da Água/estatística & dados numéricos
3.
Environ Monit Assess ; 178(1-4): 221-35, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20890788

RESUMO

Using a spatially extensive database from the Maryland Biological Stream Survey (MBSS), we describe nutrient relationships of small-order, non-tidal streams to Maryland watershed basins, Maryland Tributary Strategy basins, and stream order. In addition, we estimate the number of stream km affected by nutrient loading, using derived nutrient criteria. Based on the MBSS spring water quality sampling, we determined several important factors relating to nutrient levels in non-tidal streams. There are strong linear relationships of nutrients to the percentage of agriculture and forested land present within MBSS sampling strata. Both mean total nitrogen (TN) and mean total phosphorus (TP) levels for watershed basins by stream order show exceedances of derived nutrient reference criteria for Maryland. Four Maryland basins have over 85% of their stream kilometers exceeding the TN criterion, with three basins over 90% of the TP criterion. To protect small stream integrity in Maryland, we recommend an upper stream TN criterion between 1.34 and 1.68 mg/L and an upper stream TP criterion between 0.025 and 0.037 mg/L, based on quantile analyses. Elevated levels of both TN and TP are present in non-tidal streams, with subsequent nutrient inputs into the upper freshwater tidal reaches of the Chesapeake Bay.


Assuntos
Nitrogênio/análise , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Maryland
4.
Environ Sci Technol ; 42(16): 5872-8, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18767638

RESUMO

We investigated regional effects of urbanization and land use change on nitrate concentrations in approximately 1,000 small streams in Maryland during record drought and wet years in 2001-2003. We also investigated changes in nitrate-N export during the same time period in 8 intensively monitored small watersheds across an urbanization gradient in Baltimore, Maryland. Nitrate-N concentrations in Maryland were greatest in agricultural streams, urban streams, and forest streams respectively. During the period of record drought and wet years, nitrate-N exports in Baltimore showed substantial variation in 6 suburban/urban streams (2.9-15.3 kg/ha/y), 1 agricultural stream (3.4-38.9 kg/ha/y), and 1 forest stream (0.03-0.2 kg/ha/y). Interannual variability was similar for small Baltimore streams and nearby well-monitored tributaries and coincided with record hypoxia in Chesapeake Bay. Discharge-weighted mean annual nitrate concentrations showed a variable tendency to decrease/increase with changes in annual runoff, although total N export generally increased with annual runoff. N retention in small Baltimore watersheds during the 2002 drought was 85%, 99%, and 94% for suburban, forest, and agricultural watersheds, respectively, and declined to 35%, 91%, and 41% during the wet year of 2003. Our results suggest that urban land use change can increase the vulnerability of ecosystem nitrogen retention functions to climatic variability. Further work is necessary to characterize patterns of nitrate-N export and retention in small urbanizing watersheds under varying climatic conditions to improve future forecasting and watershed scale restoration efforts aimed at improving nitrate-N retention.


Assuntos
Cidades , Água Doce/química , Nitratos/química , Água do Mar/química , Poluentes Químicos da Água/química , Clima , Monitoramento Ambiental , Maryland , Oceanos e Mares , Poluição Química da Água
5.
Environ Sci Technol ; 42(1): 56-61, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18350875

RESUMO

Recovery of streamwater acid neutralizing capacity (ANC) resulting from declines in regional acid deposition was examined using contemporary (1990-2005) data from two long-term monitoring stations located on the Appalachian Plateau in western Maryland, U.S. Two computational methods were used to estimate daily, monthly, and annual fluxes and discharge-weighted concentrations of ANC, sulfate, nitrate, and base cations over the period of record, and two statistical methods were used to evaluate long-term trends in fluxes and concentrations. The methods used to estimate concentrations, as well as the statistical techniques, produced very similar results, underlining the robustness of the identified trends. We found clear evidence that streamwater sulfate concentrations have declined at an average rate of about 3 microeq L(-1) yr(-1) at the two sites due to a 34% reduction in wet atmospheric sulfur deposition. Trends in nitrate concentrations appear to be related to other watershed factors, especially forest disturbance. The best evidence of recovery is based on a doubling of ANC (from 21 to 42 microeq L(-1)) at the more acid-sensitive site over the 16-year period. A slowing, or possible reversal, in the sulfate, nitrate, and SBC trends is evident in our data and may portend a decline in the rate of--or end to--further recovery.


Assuntos
Chuva Ácida , Rios/química , Poluentes Químicos da Água/análise , Cátions/análise , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Maryland , Nitratos/análise , Sulfatos/análise
6.
Environ Sci Technol ; 41(16): 5601-7, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17874761

RESUMO

In this study we report on changes in the magnitude and mechanisms of episodic acidification of a small acid-sensitive stream in western Maryland (U.S.) during the 1990s, a period in which wet sulfate deposition declined by 10-25% due to implementation of the Clean Air Act Amendments (CAAA) of 1990. We observed a relatively minor trend in the magnitude of episodic acidification over this period, as measured bytransient changes in acid neutralizing capacity (deltaANC) and minimum values of ANC (ANC(min)) during 22 events sampled prior to and following CAAA implementation. Any relationship to changes in atmospheric deposition appears to be confounded by large hydroclimatological variability between the two sampling periods. Nonetheless, results obtained prior to implementation of the CAAA indicated that the mechanism of episodic acidification was mostly attributable to flushing of accumulated sulfate from the watershed, whereas results obtained post-CAAA indicated domination by base cation dilution. This shift in the mechanism of episodic acidification is qualitatively consistent with hydrochemical theory, as well as with empirical results from surface waters in other regions where dramatic declines in sulfate deposition have taken place.


Assuntos
Ácidos/análise , Rios/química , Ácidos/química , Geografia , Maryland , Sulfatos/química , Movimentos da Água
7.
Environ Monit Assess ; 77(3): 265-91, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12194416

RESUMO

Provisional physical habitat indices were developed and validated for Maryland Coastal and Non-Coastal Plain streams using variables (commonly called metrics) that best discriminated reference and degraded conditions based on biological, chemical and land use data from the 1994-97 Maryland Biological Stream Survey (MBSS). These habitat indices contained variables that described structural, hydrological, vegetative and aesthetic components of stream habitat. Variables with the best discriminatory power for Coastal Plain streams were: instream habitat, velocity/depth diversity, pool/glide/eddy quality, embeddedness, maximum depth and aesthetic rating. Physical habitat variables with the best discriminatory power for Non-Coastal Plain sites were: instream habitat, velocity/depth diversity, riffle/run quality, embeddedness, number of rootwads and aesthetic rating. The overall classification efficiency for index validation was 76% for both indices pooled over both strata. Scaled physical habitat index values (0-100) for both strata identified nearly twice as many good sites (31%) as very poor sites (16%). More than half the Maryland sites were in the poor to fair range (53%).


Assuntos
Ecossistema , Monitoramento Ambiental/estatística & dados numéricos , Estética , Sedimentos Geológicos , Maryland , Plantas , Valores de Referência , Terminologia como Assunto , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...